

Vision Language Models for Urban Health Assessment

2025 Digital Transformation Summer Corps

Collaborators

PIs: Tammy English, Rodrigo Reis, Nathan Jacobs

DI2 Engineer: Adith Boloor

Faculty Mentor: Doug Shook

Graduate Student: Eric Xing

Student Engineers: Dev Gupta, Ahmad Hamzeh,

Sophia Raudez

Problem Statement

- Public health assessment has entry barriers for researchers
 - Street view imagery (SVI) gives access to locations at our fingertips
 - Deep learning gives us feature extraction at greater efficiency (compared to human labor)
 - Inference jobs can be automated with little effort beyond setup

Overview

- Automate traditionally manual and resources-intensive process - sending out public health officials to evaluate environments
- Create an interface that will help public health researchers ask questions about given areas

Broader Impact

- Global Data \rightarrow Global Scaling:
 - Public health officers
 - Government officials
 - University researchers
- Indirect users:
 - Real estate
 - Local businesses
 - Urban planners
 - Safety officers

Background

- Vision Language Model (VLM)
 - Unifies vision and text domains

2. Create dataset classifier from label text

Initial Approach

- Generate large text captions using background job
- Use those at inference time for higher performance
- Useful in the future for features like keyword search and RAG
- Models: InternVL-38B (VLM), Phi4-mini (LLM)
- Plotly visualizing tool

Current Approach

- Use smaller VLM for direct image input at runtime
- Models: InternVL-2B (VLM)
- Google maps API w/ React app

Live Demo

VLM Evaluation (LVLM-as-a-judge)

VLM Evaluation (LVLM-as-a-judge)

Performance on 10/100 Census Tracts

Benchmark	Time* (s)	Time** (s)
Green Score	104.0	802.38
Walkability	104.0	912.17
Inhabitance	108.7	1275.5
Speed Limit Signs	103.98	765.53
Stop Signs	100.27	799.77

^{*} Based on 1088 locations - Average: 0.120 seconds per location

^{**} Based on 7906 locations - Average: 0.144 seconds per location

Next Steps

- Integrate RAG-based conversational agent which retrieves relevant visual information
- Features:
 - Saves compute time by precomputing visual embeddings
 - Saves inference time by retrieving only relevant information
 - Allows for conversational UI with context history for ease-of-use
- Apply street-level imagery to assess livability in LMICs (via Global Incubator Seed Grant)

Repository

https://github.com/washu-dev/vlm-urban-health

Questions?

